
1

• Simultaneous Analog/Digital capture
• 100MHz Analog Channel Bandwidth
• 4 Analog In channels multiplexed

- 2 Analog In via BNC buffered 1Meg
- 2 Analog In signals via DB25 POD

• 8 Digital Levels via DB25 POD
• 50MS/s Capture rate Maximum
• Two 32K x 8 deep capture buffers
• Complex trigger on Analog or Digital
• 1GHz Prescaler for Frequency Count

• Low cost PIC 16F84 design
• Logic functions in single PLD
• Full Duplex serial interface
• “Thin Server, Fat Client” model
• ASCII character Command Set
• Output as CSV or Byte-Stream
• POD has hooks for external device
• ADC socket allows SMD devices
• Scalable design to >100MS/s @ 3.3V
• Chipset suitable for embedded DSO

BitScope

Mixed Signal Capture Engine

Features

PIC

CPU

Power

Supply
Analog

Supply

PLD

Logic

Control
32Kx8

SRAM

A

Digital

Pod
Serial

~

32Kx8
SRAM

MUX
Range

B

Data

MUX

Flash
ADC

div

n

Clock

2

General
Any engineer who has developed an electronic circuit
- from a single chip micro to a multiprocessor
megaproject - will have desired a Digital Sampling
Oscilloscope and a Logic Analyzer (preferably in one
box). These devices have been the domain of the big
companies like HP and Tektronix and have had blood
curdling prices. This usually places them out of the
grasp of people who could really use them - an
increasing number of designers who are driving the
ubiquitous microcontroller into every facet of our
lives.

Furthermore, the design philosophy of test equipment
has tended to favor the portable, self-contained unit.
This means that the “Test Equipment” has a
computer, an operating system, a display, a disk, and
a power supply. And after all that - the test
electronics itself! This does suggest a few re-invented
wheels, especially if you look at what is available these
days from Pentiums to Palm Pilots. Consider also that
the functionality of a 200MHz PC with an SVGA display
is hard to duplicate in any embedded system.
Engineers like the smooth green trace of a good
Analogue CRO - as yet unmatched by any DSO that I
know of. Considering what you see in games software
these days, a 200MHz CPU with 16 bit colour should
be able to draw a reasonable simulation of a CRT in
real time - with a few MIPS to spare!

In the last year or so, the makings for a decent
sampling device have become readily available. Not
1GS/s - still the domain of HP/Tektronix -, but 50-
100MS/s at least. A number of designs have
appeared that use the Printer Port or plug into the
ISA bus. Not many use a serial interface, or include a
Logic Analyzer function. As such, the BitScope is
unique in packaging many useful functions in an
economical design without being limited to any
specific hardware platform.

Serial link - a good design decision

While a serial interface may seem a bottleneck for a
capture engine that can potentially store 64K bytes of
data, this is not necessarily a significant problem.
Thanks to the Internet and 56K modems, most PCs
now have fast buffered UARTS, so the transmission
speed should be able to be scaled to 115K Baud with
a fast PIC. At this rate (~11.5K Bytes/S) enough
samples to draw a 640x480 screen - at most 640
bytes - can be transferred in about 55 mS (18 times/
sec). For lower frequency data or simple sine waves it
is possible to only send a handful of samples to the
Host and have the Host software do some curve
fitting. Small bursts of sample data may be
transferred to the Host to let it draw a trace showing
high frequency noise etc.

Logic Analyzers do not need to rapidly update their
display. After a trigger event the data may stay in the
Sample RAM and only be downloaded when the Host
needs it. At 115K baud, the total contents of a 16K
buffer can be downloaded in less than 2 seconds. The
PC can then draw logic state or timing diagrams with
zoom, scroll, search etc.

Net Design

I have long been an admirer of the Linux development
philosophy. An open design available for general
access on the net encourages a collaborative
development effort. Many projects these days are too
complex and difficult for a single person or even an
organization to take on as a whole. The Internet has
changed the way the engineering community works.

The BitsScope design follows this new net philosophy
in a number of ways.

• The schematics and design description are
available encouraging the understanding of the
principles of operation of the device.

• The design does not attempt to enclose all
functionality in a single microcontroller. The
micro implements an open architecture
interpretive virtual machine allowing anyone to
develop an interface or application for it.

• The generic Logic POD connector is documented
allowing anyone to design a specific hardware
application for use with the BitScope.

It is my hope that other engineers and students of
electronics will find this design of some benefit. It is
also another fond hope that if someone can develop a
DOS based user interface for the beast, we might just
have a retirement plan for some of those old 386
machines cluttering up our lives!

3

BitScope
Overview

The BitScope Mixed Signal Capture Engine is an RS-
232 peripheral device intended for data acquisition
applications where a Digital Sampling Oscilloscope or
Logic analyzer would be used.

The device is not stand alone. To operate it must be
programmed by scripts from a Host attached to the
serial port. The scripts are virtual machine
instructions which synthesize the required
functionality from the BitScope specialized operations.

BitScope is capable of complex triggering and
simultaneous recording of analog data and digital
logic states, as well as Time /Frequency
measurements.

Virtual Machine Architecture

A virtual machine is an architecture which is hosted
on an an unrelated substrate machine. In this case I
have chosen the PIC microcontroller as a substrate
to implement a custom BitScope Machine, and the
PIC instructions are effectively microcode. This means
that the BitScope Virtual Machine has instructions
and registers - but they are unrelated to the PIC
native instruction set. The BitScope Machine has no
use for XOR or DECFSZ type instructions. Instead it
has instructions for manipulating registers, starting
sample RAM, and dumping captured data.

A Virtual Machine design has a number of
advantages.

• Efficiency - Each instruction may be highly
optimized for performance. A general
interpreter like BASIC can do anything - but in a
very inefficient way. A Virtual Machine instruction
is compact like assembly code, but may perform
an extremely complex task.

• Modularity - Once a register set and basic
command set are devised, extensions may be
made by adding new instructions to enhance the
machine. The original instructions remain the
same.

• Portability - changes to the substrate machine
have less of an impact.

Direct Execution from Serial Port

Most interpreters run from a program stored in
memory. BitScope is slightly different, in that it
executes directly from the serial port. As you will see
later on, the BitScope Machine instruction set is
designed to have no syntax. This means that there
can only be a maximum of 256 instructions and each
is stand alone - just like a RISC instruction set.

An atomic protocol means the software at both ends
of the serial line is simple and does not have to
preserve state information. Anyone who has studied
network protocol will appreciate the complexity of
reliable transmission of packets over a serial link. In a
PIC with 1024 words of program it is advisable to be
economical with code.

Virtual Registers

Within the virtual machine are virtual registers. The
BitScope machine is designed to look like a complex
peripheral interface. The virtual registers are hosted
by real PIC memory registers, but have meaning only
to the BitScope. An example is the Trigger Mask
register. This register is loaded with the mask bits for
the TRIG byte and will be used by the virtual machine
whenever it reloads the PLD.

Other BitScope registers may be option bits, Timer
constants, Sample Address and so on. Instructions
are defined to read and write all these registers.

Writing a Script

To make it easy for humans to understand, the
BitScope command set has been chosen to use
common printable ASCII commands. Since the
assignment of bytecodes is arbitrary, we could use
any value to mean “enter hex nibble 3” but obviously
‘3’ is a good choice for this one.

An example script for loading R6 with 0x5a is:-

[6]@[5a]s

This may seem a little obscure, but if you study the
operation of each bytecode it should make sense. It is
envisioned that ultimately a user interface would use
debugged scripts to drive the BitScope and writing
scripts would only be necessary if a user was
developing a new mode of operation - or driving it
directly from a terminal.

User Interface

The virtual machine architecture makes a clear
separation between the Host computer and the
peripheral. This allows more appropriate software
methods to be used for implementing the user
interface.

A typical user interface could be constructed using
Visual Basic or Delphi. This would allow the
programmer access to sophisticated graphics tools
and off the shelf buttons, sliders and menus. A VB
program would only have to deal with a comms port
to interface with the BitScope.

A mechanical engineer who needs to collect
transducer data may write a nongraphical interface to
collect sampled data periodically in csv format.

Post capture signal processing is also a task more
suited to a PC than a micro. Subsampling the H.F. RF
output of a transmitter should be possible with the
BitScope - allowing a fast PC to be a spectrum
analyzer.

A Palm Pilot or Win CE developer may write a dinky
interface for the BitScope so you can debug
something on your palm.

A SPICE program could include a BitScope interface
so you could see real and simulated waveforms from
a circuit simultaneously on your PC.

4

BitScope Register Set
The BitScope virtual machine has a set of 20 Regis-
ters R0..R19. The operation of the machine and all its
instructions refer to these registers. All other re-
sources in the PIC are outside the scope of the virtual
machine.

The function of the Register Set is detailed below. In
some cases related commands are shown as exam-
ples of how these registers are used.

R0

Byte Input Register assemble input data here

[clear R0
0..f increment R0 by 0..f then nibble swap
] nibble swap R0

R1

Register Pointer pointer to R(0..ff)

@ copy R0 to R1
s move contents of R0 to R(R1) - s(tore)

R2

Register Source pointer to R(0..ff)

copy R0 to R2
l move contents of R(R2) to R0 - l(oad)

R3

Sample Preload L low byte of RAM addr to load
to Spock

R4

Sample Preload H high byte of RAM addr to load
to Spock

R5

TRIG Logic Byte Logic levels for Spock to match
- loaded during Spock Init

R6

TRIG Mask Byte Don’t Care bits in trigger match
- loaded during Spock Init

R7

Spock OPTION byte TRIG and PG1 setup in Spock

R8

Trace Register Trace Option controls Sample
operation of BitScope Machine

R8(0..3) 4 bit vector to different Trigger and Chop
modes.

R8(4..7) 4 bit pointer to select one of the Data bus
MUX device channels

R9

Counter capture Lo Counter low byte shifted out of
Spock

R10

Counter capture Hi Counter high byte shifted out of
Spock

R11

DELAY-L Post TRIG delay before halting

R12

DELAY-H Post TRIG delay before halting

R13

TimeBase TimeBase expander count

R14

Channel-A/B Channel Range settings for
Chop - H/L nibbles contain
alternate values for RA(0..3)

R15

Dump Length Counter for number of Samples
transmitted per request

R16

EEPROM Data data register for EEPROM

R17

EEPROM Address address register for EEPROM

R18

POD Transmit Register holds byte for POD

R19

POD Receive Register gets byte from POD

R7:0 Digital TRIG/Analog TRIG

R7:1 Select source of TRIG7 Dig MUX

R7:2 Select source of TRIG7 Dig MUX

R7:3 Set Bit PG1 to RAM and Analog Source

5

BitScope Command Set
The command set for the BitScope Virtual machine is
a subset of the bytes values between 0 and 255. Ini-
tially, active commands are confined to the ASCII
range from 0 to 128. Where ever possible, command
values correspond to a character with a meaning re-
lated to the command function. This makes the byte-
codes human readable - with some practice.

The general scheme for allocating byte-code values
and their ASCII symbol is as follows:-

numerals used for entering data
operators manipulation of register values
lower case general machine operation
upper case major machine functions
non-printables reserved for future commands

Unused bytecodes will be echoed if printable, else ig-
nored.

00 - € Reset

Reset the machine. Print the machine ID string

23 - # Load Source Register

Store R0 into R2. Set up R2 which is a source Regis-
ter. A Register to Register move may be done by
pointing to a source (R2) and destination (R1).

2b - + Inc REG

Increment the register pointed to by R1

2d - - Dec REG

Decrement the register pointed to by R1

30 - 0 Enter nibble 0

Increment R0 by 0 and nibble swap R0

31 - 1 Enter nibble 1

Increment R0 by 1 and nibble swap R0

32 - 2 Enter nibble 2

Increment R0 by 2 and nibble swap R0

33 - 3 Enter nibble 3

Increment R0 by 3 and nibble swap R0

34 - 4 Enter nibble 4

Increment R0 by 4 and nibble swap R0

35 - 5 Enter nibble 5

Increment R0 by 5 and nibble swap R0

36 - 6 Enter nibble 6

Increment R0 by 6 and nibble swap R0

37 - 7 Enter nibble 7

Increment R0 by 7 and nibble swap R0

38 - 8 Enter nibble 8

Increment R0 by 8 and nibble swap R0

39 - 9 Enter nibble 9

Increment R0 by 9 and nibble swap R0

3c - < Get counter value from Spock

Shift the current 16 bit counter value from Spock into
R9, R10

3e - > Program Spock from Registers

Load 5 bytes of data from R3..R7 into Spock. Previous
contents of counter are destroyed

3f - ? Print Machine ID

Print <CR>Char8..CHAR1<CR> where CHARn is part
of a string which identifies the type and revision of this
device.

40 - @ Load Address Register

Store R0 into R1. Use to set up register pointer

53 - S Dump Sample RAM (CSV)

Dump lines of 16 Sample Ram values - digital and ana-
log.

<CR>ddaa,ddaa,ddaa,.....................ddaa,ddaa<CR>

ddaa,ddaa,ddaa,.....................ddaa,ddaa<CR>

54 - T Trace with TRIG stop

Begin Sample with OPTION mode, until TRIG then
DELAY, Halt Sample Clk, and print Sample Address.

5b - [Clear R0

Register R0 is cleared. This usually precedes a nibble
load

6

5d -] Nibble swap R0

R0:(0..3) is swapped with R0:(4..7). This operation fol-
lows a nibble entry and puts the entered nibbles in the
correct order.

61 - a Enter nibble ‘a’ hex

Increment R0 by 10 and nibble swap R0

62 - b Enter nibble ‘b’ hex

Increment R0 by 11 and nibble swap R0

63 - c Enter nibble ‘c’ hex

Increment R0 by 12 and nibble swap R0

64 - d Enter nibble ‘d’ hex

Increment R0 by 13 and nibble swap R0

65 - e Enter nibble ‘e’ hex

Increment R0 by 14 and nibble swap R0

66 - f Enter nibble ‘f’ hex

Increment R0 by 15 and nibble swap R0

6c - l Load R0 from @R2

Copy contents of register pointed to by R2 to R0

6e - n Next Address

Increment address register R1

70 - p Print REG value @R1

Print <CR>ASCII,ASCII<CR>

73 - s Store R0 to @R1

Copy contents of R0 to register pointed to by R1

75 - u Update RAM pointers

Copy contents of R3,4 to R9,10. Updates Sample
Address value from Sample Preload registers.

78 - x Exchange byte with POD

Transmit byte in POD_TX to POD IO-0. Wait for reply
byte on IO-1 and put it in POD_RX then return it to
Host

7c - | Pass Through byte to POD

Transmit byte in POD_TX to POD IO-0. Connect IO-1 to
Serial Out for Host.

7

Trigger and Chop Operation

The core functionality of the BitScope is contained in
the T (Trace until TRIG) function. After setting up all
the registers correctly, this is effectively the GO but-
ton.

Spock Preloads

Before initiating operation, it will be necessary to set
Spock into a known state. R7..R3 contain the preload
values which are loaded with the “>” command.

Example - Load Spock with 0, 0f, aa, 00, 00

[3]@[]sns[aa]ns[f]ns[]ns>

[3]@ enter 3 into R0, then copy it to R1
[]s enter 0 into R0, then store it at (R1)
ns increment R1 to 4, then store R0 at (R1)
[aa]ns enter aa in R0, inc R1, then store R0 at (R1)
[f]ns enter f in R0, inc R1, then store R0 at (R1)
[]ns enter 0 in Ro, inc R1, then store R0 at (R1)
> load Spock with R3..R7
Once these inital preloads have been set up, a single
“>” command will reset Spock to a known condition for
a retrace.

Channel Register

R14 controls the Channel A/B and range selection
during sampling. This register contains 2 nibbles -
normal (low) and alternate (hi) which are put out on
PortA of the PIC (see Hardware description).

R14[0] RNG0 to attenuator
R14[1] RNG1 to attenuator
R14[2] CH-A/B selects A or B as analog source
R14[3] zz-clk value to freeze zz-clk to
The high nibble of R14 has an alt version of these
same bits. Depending on the Trace Mode, these 2
nibbles may be swapped repeatedly while waiting for
TRIG event, effecting a CHOP function

Trace Option

When the machine begins a trace, it will fall to a loop
that polls for a trigger event. The Trace Option regis-
ter R8 contains a vector to a number of different loop
algorithms. These will implement different modes of
behavior. There are 16 possible modes, not all cur-
rently defined.

Trace Mode 0 Single channel mode simple
Trace Mode 1 Single channel TimeBase expansion
Trace Mode 2 CHOP mode simple
Trace Mode 3 CHOP mode TimeBase expansion

TimeBase expansion

R13 holds a byte that can expand the machine Time-
base. In the Trace loop (above) the sample clock zz-clk
may be frozen for a count of R13, then turned on for a
burst (1uS). This will effectively expand the period over
which we may sample a waveform.

Post TRIG Delay

These two registers contain a 16 bit counter that
must be counted down after a trigger is hit. this is like
delayed sweep. The sample clock (zz-clk) is not frozen
until the delay is executed. For each iteration of the
DELAY, the TimeBase expansion delay value is exe-
cuted. This magnifies the TRIG Delay by 1..255 - giving
delays of up to several minutes. Depending on the
Trace mode, TimeBase Expansion may not apply to
the sample mode, but will always apply to the Post
TRIG Delay.

Trace until TRIG

The “T” command will cause the machine to start
sampling and go into a tight loop waiting for a TRIG
event. Upon seeing the TRIG condition, the Post Trig
delay is initiated before halting the machine. The con-
tents of Spocks address counters will be read and
this value printed to the serial port.

Note that the operation of the Sample Loop will be set
by the Trace option register. Up to 16 different algo-
rithms may be selected to achieve different results
including frequency and period measurements.

Example

>T reload spock, then sample
73a0 hit the TRIG, delay, print frozen address
S dump samples from SRAM 13a0
00a2,00a3,00a7,019e,009f.........0176 Data!
>T arm the TRIG then go again
7395 hit the TRIG again (nearly same place)
....etc

Note that the Spock counter is a full 16 bits, but the
buffer regions it accesses are only 16K. Since we
have 32Kx8 SRAM chips, this is explained by the PG1
bit (set in Spock) bank selecting the upper or lower
16K. The full counting range of Spock may be used for
timing resolution if required, but the real SRAM will be
aliased in all 4 16K regions of the address space.

8

Hardware
The circuits for the BitScope capture engine are
included at the end of this document. there are 5
sheets as follows:-

1 BitScope CPU and Storage Engine - covers the
PIC, PLD logic, Clock, Data MUXs and Sample
RAM.

2 BitScope Power Supply and Comms - Filtering,
Rectification and Regulation. RS-232 level shifting
and indicators. Reset circuit (for debug).

3 BitsScope Digital Capture - Logic POD circuit
with latching buffer and POD I/O switches.

4 BitScope Analog Capture - Vertical channel
MUXs, Attenuation switch, ADC Buffer and ADC.

5 BitScope Input Channel Buffers - High
Impedance voltage followers and op-amp buffers.
1GHz prescaler circuit.

Picard is in command

The PIC 16F84 is an extremely versatile chip, highly
suited to control applications where interface to logic
circuits is required. The fast RISC instruction set and
the 3-state I/O pins are a clear advantage for
machine control.

At first glance you might think that an 18 pin micro
has insufficient pins for this application. This is not so.
With careful design and planning it is possible to use
most pins for more than one function. The allocation
of pins is described as follows.

RA0 - Range 0

RA1 - Range 1

Output pins in COUNT mode that control the Analog
gain of the Y amplifiers (sheet 4).

0 Gain = 4.583

1 Gain = 1.000

2 Gain = 0.500

3 Gain = 0.190

Note that the gain of the ADC Buffer is 1.667

RA0,RA1 are I/O pins in SHIFT mode that are
available at the LOGIC POD for external Smart PODs.
In COUNT mode, analog switches isolate these signals
from the LOGIC POD.

RA2 - Channel A/B

Output pin that swiches the Analog source between
CHA BNC and CHB BNC, or in POD mode between
PODA or PODB analog signals brought from the LOGIC
POD.

RA3 - zz-clk: The Clock That Sleeps

Three state I/O pin. State machines in PLD devices
should not be exposed to glitches on the clock. Some
registers may see the clock, others may may not,
resulting in non-deterministic behavior. Jamming a
50MHz clock signal is not polite. U6A (74AC74) is
double clocked by frequency doubler U3D (74AC86)

(on the clean edge) and allows the PIC to have 3 state
synchronous control via RA3. High, Low, Freerunning
- no glitches. This control is important as we must use
zz-clk to shift in control words to the PLD as well as
modulate the sampling for lower frequency timebase
measurements.

RA4 - Digital Data

Input connects to U5 8:1 MUX to read the 8 data bits
of the Logic Analyzer RAM bus. Bit7 is routed through
Spock to be optionally the TRIGGER MATCH or
FREQUENCY/EVENT signals. RA4 may be connected
to the PIC prescaler in the OPTION register.

RB0 - Analog Data

COUNT mode - Input connects to U4 8:1 MUX to read
the 8 data bits of the ADC RAM Bus. As RB0 is the
PIC INT source, during SAMPLE, if the MUX points to
Bit7 then INT may be used as a zero crossing
detector for Analog TRIGGER (in additional to the
Complex trigger implemented in the PLD).

SHIFT mode - Output signal is Shift-In data to feed
Spock which needs 5 bytes to set up counters,
trigger bytes and options.

RB1 - SEL 0

Count mode - Output A0 for data MUXs U4, U5.

Shift mode - Input Shift-Out data from Spock. Current
16 bit counter state in Spock is shifted out as new
data is shifted in.

RB2 - SEL1

RB3 - SEL2

Output pins A1, A2 for data MUXs U4, U5.

RB4 - SHIFT/!COUNT

Output controls the function of Spock.

1 causes Spock to shift new data into its registers

0 causes Spock to count and trigger

RB5 - Serial Out

Serial data output

RB6 - Serial In

Serial data input

RB7 - STORE/!READ

Output control for RAM and ADC/Buffer control. This
signal selects either read or write for the RAM,
allowing SAMPLE data written to RAM, or later read
back.

CLKI, CLKO

The PIC is clocked by a crystal - which depending on
the PIC device may be 4MHz, 10 MHz or 20MHz.

9

Spock is Logical

The PLD soaks up a large amount of logic and makes
the circuit look much simpler than it is. The
functionality implemented in the PLSI1016 is about
16 - 20 medium density TTL devices.

The two main functions of Spock are address
generation for the SRAM, and 8 bit comparator for
trigger generation.

All functions of this device are driven by zz-clk in either
of two modes:-

a Count Mode - shift/count low The counter will be
counting and the comparator will be monitoring
the byte stream looking for trigger matches to
pass on to RA4 (TOCI).

b Shift Mode - shift/count high The counter will be
shifting in bits from A-DATA (RB0), and shifting
out bits to SEL0 (RB1). This means we can reload
the counter and find out where it was up to when
we stopped it. Bits from the top of the counter
also get shifted up to the comparator circuits to
load trigger words.

Spock contains 5 bytes of loadable registers:

R0 - 16 bit counter low

R1 - 16 bit counter high

R2 - 8 bit TRIGGER PATTERN

R3 - 8 bit TRIGGER MASK

R4 - 4 bit option

R4:0 Digital/Analog Bus as TRIG Source

R4:1,2 TRIG7: 00 DD7
01 TRIG MATCH
10 EVENT 1
11 EVENT 2

R4:3 PG1 - selects BNC/POD for ADC
 input and hi/lo 16K of RAM

TRIGGER OPERATION

The TRIG comparator may be set to monitor either
the LOGIC Bus or the ANALOG Bus. Bit values will be
compared to the PATTERN register, or ignored where
the MASK is a ‘1’.

Pattern 01100100

 + Mask 00001111

 -> TRIG 0110XXXX

The meaning of this triggering is obvious for Logic
Analyzer functions, but not so clear for Analog trigger.
Obviously, setting the mask to 0111 1111 will select
the MSB of the ADC output - meaning trigger on zero
crossing.

By masking off the lowest 4 bits of the ADC byte we
can select 1 of 16 “Bands” of ADC output and trigger
as the ADC crosses the edge of this band.

By masking off some MSBs and some LSBs, we can
make a sort of AC signal detector trigger. And of
course, many other of the 2^16 combinations will be
absolutely useless!

Trigger Examples

With this set of logic functions it is possible to make
Spock and Picard do some nice sampling tricks.

Pre and Post Trig Display

• Set up TRIG event - DIG / ANALOG

• Start Spock counting, wait for TRIG

• Delay 1/2 Sample RAM Buffer

• Freeze zz-clk

• Shift out frozen 16 bit counter

• Dump to host Pre/Post data

Delayed TRIG

• Set up TRIG event - DIG / ANALOG

• Set up Post TRIG delay parameter

• Start Spock counting, wait for TRIG

• Delay Post TRIG delay parameter

• Delay 1/2 Sample RAM Buffer

• Freeze zz-clk

• Shift out frozen 16 bit counter

• Dump to host Pre/Post data

Slow TimeBase Capture

• Set up TRIG event - DIG / ANALOG

• Set up SAMPLE/FREEZE mark/space

• Set Spock RAM counters to 0000

• Enable zz-clk for ~ 5uS

• HALT zz-clk high (so logic buffer is transparent)

• Delay space time

• repeat previous 3 steps N times

• STOP and dump Spock state to Host

Chop and Alt

Chop is accomplished as above, but the PIC flips the
CHA/B signal at ~ 200KHz. At the end of the
SAMPLE, after N flips, zz-clk is frozen and the counter
in Spock is dumped to the Host. The chop positions
may be calculated as :-

Sn = n * Sfinal/N (within the grasp of a Pentium)

Note that if the Host displays the contents of the
Sample RAM after a CHOP capture, what you will see
is similar to an Analog Oscilloscope display. The CRO
is doing the same thing!

Alt is accomplished by reducing the buffer length and
flipping CHA/B each Analog TRIG event

10

Frequency Period Measurement

The TRIG7 output from Spock may be driven from a
clock derived from either the 1GHz prescaler, or the
signal present at the input of the ADC (allowing gain to
be set for varying signal magnitudes). Frequency can
be derived by using the TOCI (DigitalData) on the PIC -
using normal counter techniques.

Alternatively, for lower frequencies, a full buffer of
samples may be taken. The trigger is then set for zero
crossing and Spock is single stepped through from
address 0000. The trigger points (TRIG still works in
Read Mode!) are dumped to the host, defining the
period over N cycles. This would mean, for a sample
RAM of 16K, the period (hence frequency) could be
resolved to up to 1 part in 16,000 - 0.006%, or ~
65ppm. This technique could be extended to very low
frequencies that exceed the 16 bit counter wrap
around, where Spock is used to resolve the end point
of the waveform.

The above techniques use the logic in Spock, but do
not require large amounts of data to be transferred
to the Host.

Serial Interface

Transistors Q1, Q2 level shift the serial In/Out
signals. LD1, LD2 LEDs monitor the serial data.
Inductor L2 isolates the BitScope circuit from high
frequency noise on the serial cable.

Power Supply

Socket P1 connects to a nominal 10Vac PlugPak.
D1,D2 form two 1/2 wave rectifiers to give us a split
rail supply (Vraw- and Vraw+) of ± 10Vdc. U11, U20
regulate +5, -5 for digital circuits.

Analog supplies +5, -5 are regulated by an isolated
pair of 3 terminal regulators U9, U10. Note inductor
L1 isolates the Analog ground from the Digital ground
at high frequencies. In mixed signal designs it is
essential to guard against digital noise - like ground
bounce - getting into the analog circuits.

Logic Pod

The Logic Pod circuit represents a significant feature
of this design. U12 (74AC573) is a transparent buffer
which latches the 8 logic levels for writing into the
RAM chip. This buffer has input pulldown resistors
(nominally 1Mohm).

Analog switch (U22) connects RNG0, RNG1 signals
from the PIC to the Logic POD. These signals are
available during Spock Shift operations.

Vraw+, Vraw- are available through 200 mA poly fuses
at the Logic POD. This allows external POD devices to
be powered from the BitScope. +5 regulated is also
available.

Note also that 2 analog signals are brought in via the
Logic POD. These are the 3rd and 4th Analog
channels (selected via PG1 option in Spock). These
signals have Analog grounds which should not be
connected to Digital grounds.

Applications for Logic POD

The following ideas suggest possible uses for the
Logic POD connector. Obviously, the minimum
requirement is a 25 way ribbon cable terminated by a
pin header for connecting probes.

By providing I/O control signals it is possible to have
POD devices that can be configured or provide extra
functionality. Note that the ByteCode protocols and
scripts to implement these functions are currently not
defined, and in some cases may require a PIC with
more Program memory than a 16F84. Fortunately
Microchip have roadmap of 18 pin enhanced PICs to
take us up to 4K of program words!

• Logic Analyzer POD with active TTL level Buffers
with signal conditioning.

• Logic Lab POD - a breadboard POD including
supplies and Digital/Analog monitoring for circuit
development. I/O pins used for configuration.

• Serial protocol analyzer - serial stream fed
through a shift register which is monitored by
Spock TRIG function to detect sequential
patterns.

• 10 Bit Logic Analyzer - 8 level + 2 Analog logic

• Differential Voltage probe for analog signals

• High voltage, or millivolt active probes for analog
channels.

• Data Acquisition POD - Current, Voltage,
Temperature etc resolved and stored as bytes to
Logic RAM, handshake via I/O pins

• PIC Programmer POD

• Spectrum Analyzer POD

• Video Capture POD - capture 8 full video lines for
analysis,

• Component Tester

• SONAR POD

11

Analog

The analog circuitry of BitScope includes the Flash
ADC converter, ADC buffer with offset adjust, Range
MUX, Analog Source MUX and Vertical Input buffers.

ADC

The Flash A/D Converter is the core component of
the Analog part of BitScope. Flash converters have
been around for some time - mostly for digitizing
video. As such a 25MHz sample rate has been a typi-
cal spec for these devices, although recently very fast
low cost devices have appeared from Analog Devices
and TI that sample up to 80MHz and have bandwidths
exceeding 100MHz.

The interface is simple. The data bus goes to the Ana-
log RAM, Spock and MUX. Sample clock is just zz-clk -
same as Spock. !STORE drive the !OE pin.

The nominal ADC in the BitScope is the trusty
MC10319 from Motorola. This device uses a com-
parator tree and gray scale decoder, and may be
clocked from 25MHz down to DC. This chip is quite old
now and is easily outperformed by new CMOS devices.
Why design in an outdated chip? It is the footprint for
an ADC Module!

ADC Module

The Motorola MC10319 comes in a 24pin 600mil
package. It requires all the analog and digital power
supplies plus data bus and control signals necessary
for any ADC. Rather than have to design a new PCB
for every different ADC chip (which are all surface
mount now) it seemed a better bet to design for the
Motorola part, then make a 24pin 600mil “carrier”
PCB for each new Flash ADC of interest. If you care to
examine the spec sheets on a few Flash ADCs, you will
see they work in much the same way. The only real
difference is the input offset and span details. This
module scheme is quite flexible. It is even conceivable
that a 16 bit ADC module could be devised that out-
puts odd/even byte pairs - to be descrambled from
RAM.

MAXIM to the rescue

You may have noticed that MAXIM make great analog
and linear devices. A few years ago, wide bandwidth
OP Amps were rocket science. Then came the
MAX477. This device has a 300MHz GBP, uses volt-
age feedback and is happy to drive 50 ohm capacitive
loads. As an extra bonus, it has 1 Meg input
impedance and negligible input capacitance. This is
just the ticket for getting a wide bandwidth signal to
an ADC. In addition, MAXIM make superior versions of
the venerable 4052/4053 analog switch - which have
exceptional performance characteristics.

The analog path to our ADC is a series of Wide band-
width OP Amps forcing the signal through 4:1 analog
switches. This combination avoids RC filters which
could degrade the high frequency components of our
signal.

Vertical Input Buffers

The main source of Analog signals is through CH A
and CH B BNC connectors (sheet 5). These input cir-
cuits are intended to be compatible with generic 10:1
probes.

S1, S2 provide AC/DC coupling via 100nF caps C32
C34. 1M resistors to GND provide the nominal 1M
impedance while R25/27, C31/33 , D8-11 give input
protection.

The high impedance voltage follower circuits are
JFETs Q6/7 and Q8/9. Operating point and offset
adjust is set by Q3/RV3 and Q10/RV4. JFETs have
quite a high output impedance, so MAXIM to the res-
cue again. U23, U24 unity gain followers buffer the
analog signal to the next stage.

Logic POD Analog In

The 3rd and 4th channels of analog input come from
the Logic POD. These signals are attenuated by 20K
networks R22,23 and R19,20. To compensate for the
input capacitance of the 4052 device speedup capaci-
tors C56, C57 are provided. These may need to be
trimmed and should have a nominal value of Cin/4
(about 0-10pF).

The maximum input voltage of U14 is ±3V, so given an
attenuation factor of 4.830, this means a maximum
analog voltage at the POD of ±15V - suitable for most
solid state designs. Higher voltage ranges will need
extra circuitry in the POD.

Analog Source

BitScope has 4 Input Channels - 2 from the BNCs and
2 from the Logic POD. These signal may range over
±3V. U17 (4052) selects one signal based on PIC out-
put pin CH-A/B and Spock output pin PG1.

CH-A/B is under dynamic control of the PIC and sim-
ply chops the source between BNC A<->BNC B or
POD A <-> POD B.

PG1 is set up as an option bit in Spock and may only
be changed when Spock is reloaded. PG1 selects ei-
ther the BNC channels OR the POD channels as the
analog source.

Note that PG1 also selects the hi/lo half of both
RAMs. This means that we have a completely sepa-
rate 16K buffer for both Analog and Digital samples
for POD source and BNC source!

As a bonus, there is a spare 4:1 MUX in U17. This
activates 1 of 4 LEDs during sampling to give Channel
Sample indicators at the front panel. As mentioned
previously, flashing LEDs are an important feature of
any electronic device.

Range Buffer

U14 is a straight 300 MHz unity gain follower that
buffers the output of the MUX. The low impedance
output of this buffer drives the attenuator section.

3 Resistor networks give attenuation of 1, 2 and
5.273. The other option is a x 4.583 gain stage to
boost low level signals. The 4 range options are
switched by MUX U18 (4052). This MUX is addressed
by RNG0, RNG1 outputs from the PIC.

12

Depending on the 4052 (MAXIM is best) you may
need to add a small speedup cap C69 to the 5:1
range for ideal frequency response. A poor mans
trimmer can be made from some adhesive copper foil
(stained glass supplier) and a bit of paper.

Gain Buffer

U15 is configured as a (x 4.583) non-inverting amp to
boost small signals to feed the ADC. It is possible to
use the MAXIM 477 device here, but for a gain of 5 it
has only a bandwidth of 25 MHz. The slightly better
choice is the Analog devices AD8048 which is opti-
mized for gains of +2 or more. At a gain of 5, it has a
bandwidth of better than 50 MHz. For even better
performance you may be able to reduce the gain of
U15 slightly. The bandwidth improvement will follow
1/[1+Rf/Rg]. The AD8048 has a unity gain mate -
the AD8047 - which is virtually a drop in replacement
for the MAXIM 477.

If you use the Analog Devices AD9057 ADC (the pick
of the litter) which has a 1 V span, you may halve the
gain of this stage - preserving the 100MHz bandwidth
across all ranges. This is useful - even though the
AD9057 samples at 40/60/80 MSPS it has an ana-
log bandwidth of 120MHz! This may seem confusing,
but will be explained below. There is a bit more to
sampling than you might think.

By the way, because this is a 8 bit sample engine, we
don’t care too much for whole numbers in the gains.
The Host display software can sort this out with high
precision arithmetic. All the Host needs to know are
the constants for each range for a device. There lies a
use for some of the 64 bytes of EEPROM in the
PIC16F84!

ADC Buffer

After the Range selector, the analog signal is buffered
and amplified by U16 - another trusty MAXIM chip.
This stage has a gain of 1.667 which takes an input
clamped at ±0.6v and outputs a ±1.0v signal. The off-
set of the output is set by emitter follower Q5 and
RV1. Adjusting RV1 will shift the signal span to match
the input of the ADC.

The Motorola ADC has a 2V span centered at 1V.

The AD9057 has a 1V span centered at 2.5V

The TI TLC5540 has a 2V span centered at 1.62V

Diode clamps on the input to U16 ensure that the
input to the ADC never exceeds 2V p-p. Some ADC
chips will not tolerate overvoltage on the input signal.
Current limiting resistors R38, R29 ensure that the
mighty MAXIM drivers do not exceed the current lim-
its of the Range Select MUX.

The ADC Buffer provides a low impedance drive for
the ADC - which may be a few hundred ohms and 30
pF or so. Note that C27 takes off the ac component of
the input to the ADC for edge counting in Spock.

RV2 is connected to pin 24 of the ADC to adjust the
span. This allows the span to be calibrated if possible
for the particular ADC in use.

1GHz Prescaler (Enough is never enough)

A design is finished when either:-

a there is nothing left to add

b there is nothing left to throw out

c both of the above

1GHz prescaler chips (MC12073) are very common
and cheap. They are used for PLLs in TV set etc.
These chips take a high frequency signal and output a
f/64 square wave. By including a switch (S3) and a
50 ohm resistor it is possible to switch in a prescaler
device that drives a spare clock-in on Spock. This can
then be routed through to the PIC TOCI pin for count-
ing - giving us a way of frequency measurement up to
1 GHz.

Switch S3 switches in the prescaler with a 50 ohm
terminator to BNC ChB. This has other benefits. It
means that we can use Channel B as a 50 ohm termi-
nated input.

Idea - Channel B with S3 on could be used as a Ether-
net cable terminator with the ability to sample the
network traffic for display on a PC.

13

Sampling
In data acquisition applications there is often some
confusion about the relationship between bandwidth
and sample rate. The Nyquist rate of Fs/2 is held to
be the maximum frequency that can be captured by
periodic sampling at Fs. If so, why would we want an
instrument that has a bandwidth of 100MHz and yet
samples at a maximum rate only 50 MSPS?

The Nyquist rate applies to continuous time varying
signals. In this case, the highest frequency component
should be less than Fs/2 (25MHz@50MSPS) to avoid
aliasing.

Repetitive waveforms are a different matter. These
are the only high frequency waveforms you will ever
see on an analog CRO. The same waveform is re-
drawn each sweep and the eye sees a solid trace.
Sub-sampling is similar - we use multiple samples and
overlay them to build an image.

Providing that the ADC we are using has a wide band-
width (does not attenuate the signal) and a small
aperture (time window required to freeze the signal
level), it is possible to sample a repetitive waveform
over many cycles and build up a snapshot of the exact
waveform - limited only by the bandwidth of the signal
path. This technique is known as sub-sampling and is
really just another example of the RF Mixer in the digi-
tal world.

Sub-sampling has a few limitations. It is not possible
to sub-sample a waveform that is harmonically related
to the sampling frequency. Practically this means that
if the waveform of interest is related to the sample
frequency, the sample points will always fall at the
same position and the parts between will remain a
mystery.

Another problem is resolving the ambiguity of the pe-
riod of the sub-sampled waveform. Lets say we have a
signal of about 28MHz and we are sampling at
40MSPS. What we will see in the sample buffer is a
sequence of values with components at 12MHz and
68 MHz. How can these be plotted to build up a profile
of the original 28 MHz signal? Well, if we can some-
how measure the fundamental frequency of the sam-
pled wave, that will imply period. Since we know the
sample rate accurately, we can chop the sample
buffer up into segments of N wave periods and then
plot them overlaid.

It would be safe to infer from the above discussion
that a wide bandwidth DSO should have a facility for
frequency measurement on board. Either that or work
out how to sample at 1GHz :-) By a stroke of good
fortune it happens that the BitScope has provision to
measure the frequency of a signal presented to the
ADC!

Note that for resolving single event, high frequency
pulses (like logic glitches) there is only one solution -
over-sample by at least a factor of 10. This is the do-
main of the test equipment companies who apply
state of the art circuit techniques to resolve sample
to 1nS or better.

Operation
Some operational details of the BitScope are detailed
below

Serial Interface

In the 4MHz PIC16F84 version of Picard the baud
rate is set at 19200. Faster chips may be scaled up
by simply replacing the XTAL. A host program will
need to know this - to compensate for different CHOP
and timebase calculations.

8MHz - 38,400 12MHz - 57,600

To get to 115,200 Baud will require retuned serial
routines, since the fastest PIC currently available is
20MHz.

There is no handshaking for dumped data. The PC
must be able to handle the data flow or break it into
small chunks with a separate request for each. Fast
UARTS have a 16 deep FIFO, so they should be able to
handle 16 character chunks at least.

Regaining Control

All BitScope operations - including wait on trigger -
may be interrupted by any serial command. The first
part of the software UART makes sure that the sam-
ple clock is halted. As soon as a serial byte is assem-
bled and echoed, the UART is turned back on and
once activated will abort all previous operation. In this
sense the BitScope command protocol is truly atomic.
Each command is designed to ultimately end in a Halt,
if not prematurely aborted.

In addition ASCII code 00 is the reset vector, so it
should be possible to get the PICs attention with a
<break>.

Voltage Ranges

The BitScope includes 4 internal attenuation ranges,
and 4 Channel inputs. Channel A and B are BNC con-
nectors which may have x1 or x10 probes connected.
Channel C and D (POD Inputs) have a fixed attenuator
- and possibly extra circuitry in the POD. A table of
range sensitivities is detailed below. The ranges are
not nearly as comprehensive as a Bench CRO, but
cover the range most useful to digital and analog cir-
cuits. Furthermore, it is intended that the POD con-
nector should deal with unusual or high voltage sig-
nals by way of an Active or Smart POD adapter.

It should be possible to alter the gain of some ranges
if desired. Since the ADC output is an 8 bit number
which ranges from 00 to FF, the final interface just
needs to ratiometrically apply this hex value to the
voltage range of each stage.

A little thought will reveal that for a Digital Oscillo-
scope volts/div and uS/div are quite arbitrary no-
tions. Provided that the signal under consideration is
within the ADC range and the Sample Buffer size, a
display can be of arbitrary size and grid spacing.

Similarly, the notion of Y offset becomes a display
function - nothing to do with the sample engine.

14

RANGE BNC x1 BNCx10 POD

00 ±130mV ±1.30V ±632mV

01 ±600mV ±6.00V ±2.90V

10 ±1.20V ±12.00V ±5.80V

11 ±3.16V ±31.60V ±15.28V

Table of Input Ranges
ADC Span = 2V
Resistor Attenuators as per circuit

15

Talking to the POD

If you examine the POD connector, you will see that
there are 2 I/O signals that are available when the
BitScope is not Sampling. It is intended that these sig-
nals form a bi-directional link to another device at-
tached to the POD connector. By establishing a link to
the POD, it is possible to make the POD device do
some clever things that the BitScope can’t. This ex-
tends the functionality of the instrument.

I/O Signals

IO-1 Input pulled high by R18

IO-2 Output data to active POD

Protocol Pass-Through

This method of POD talking makes the BitScope trans-
parent to the Host machine. A byte to send to the
POD is setup in POD_TX register (R18).

Bytecode “|” is executed which echoes the | char,
then the contents of POD_TX is sent serially to IO-2.
The active POD receives this and may respond via IO-
1. Once the byte is transmitted, the PIC connects IO-1
to Serial Out, and will stay that way until aborted by a
new command.

This scheme allows a bytecode pass-through! It would
be possible to actually connect another BitScope to
the POD of the first one. There is a protocol penalty
for bytes from the Host, but none in the other direc-
tion. Subject to serial jitter there is no limit to this re-
cursion.

Example send ‘p’ followed by ‘T’ to the POD

[12]@[70]s| set up R1, then ‘p’
4d the response will be piped through
[54]s| send the POD a ‘T’
506f the response will be piped through
> we are back talking to BitScope

Slow Byte Exchange

A second method of POD control for devices that may
not be able to handle high speed serial is a byte ex-
change protocol.

R18 is POD_Tx, R19 is POD_Rx.

A byte to send is put in POD_Tx as above. Upon execu-
tion of Byte command ‘x’ a software UART (9600)
transmits the byte in POD_Tx to IO-2. The UART then
monitors IO-1 for a serial byte returned. This byte is
put in POD_Rx and then sent to the Host at full speed.

Some POD devices may just need a pulse, so the byte
transmitted could be FF, FE, FC, F8, F0, E0, C0, 80, 00.

If no byte is returned by the POD, the next command
from the Host will simply abort the UART and proceed
with the new command.

16

